Eliza Skrevet 23. september 2012 Skrevet 23. september 2012 OK, det her er off topic. Men nå har jeg forsøkt å få til dette integralet en stund og Rottmann hjelper meg ikke , enten så er jeg blind eller så er dette for lett for Rottmann integral( grense fra 0-uendelig) (t^0.45)*e^-t dt Sikkert lett, men delvis funker heller dårlig slik jeg ser det .. sett meg blind tydeligvis Siter
Zeph Skrevet 26. september 2012 Skrevet 26. september 2012 OK, det her er off topic. Men nå har jeg forsøkt å få til dette integralet en stund og Rottmann hjelper meg ikke , enten så er jeg blind eller så er dette for lett for Rottmann integral( grense fra 0-uendelig) (t^0.45)*e^-t dt Sikkert lett, men delvis funker heller dårlig slik jeg ser det .. sett meg blind tydeligvis Eg kan ikkje noko svar, men må spørja om kva nivå dette ligg på, samt om du fant ut av det. I WolframAlpha dukka det opp eit gammasymbol eg aldri har sett før. Eg konkluderte med at det kanskje ikkje var noko eg burde rota meg borti. Siter
Eliza Skrevet 26. september 2012 Forfatter Skrevet 26. september 2012 Stemmer at man kan skrive integralet i gamma form. Men jeg ble ikke noe klokere, eller klarte hvertfall ikke løse det i den formen heller. Er universitetsmatte, burde gå under calculus 1 eller 2 tipper jeg, men problemet dukket opp i et fag som heter " Safety and reliability analysis" Siter
Eliza Skrevet 27. september 2012 Forfatter Skrevet 27. september 2012 nope har ikke sett noe mer på det, får nå være grenser med tidsbruk.. Men om noen har peiling så setter jeg pris på å få stilt nyskjerrigheten min ( fooor jeg tror egentlig det er gaaanske lett.. ) Siter
Gjest Jester Skrevet 27. september 2012 Skrevet 27. september 2012 Hvordan utdannelse tar du? det faget hørtes ut som noe jeg ville likt Siter
Eliza Skrevet 27. september 2012 Forfatter Skrevet 27. september 2012 Marin teknikk 5-årig master Faget tilhører vel heller pålitelighetshjørtet, hvilket blir ganske relevant om man begynner å se på subsea systemer ( derfor jeg tar det ) Siter
TaTa Skrevet 27. september 2012 Skrevet 27. september 2012 Sett inn 0-uendelig, så skal du få 0.88 ell no tror jeg. Siter
Eliza Skrevet 27. september 2012 Forfatter Skrevet 27. september 2012 Sett inn 0-uendelig, så skal du få 0.88 ell no tror jeg. kommer dette fra en regle no sted? vil gjerne se utregningsmetoden skjønner du.. litt nyskjerrig på hvilken/hvilke formler som blir brukt. pluss at utregningen av gamma for noe annet enn heltall er noe rustent i denne gården Siter
BadWolf Skrevet 27. september 2012 Skrevet 27. september 2012 kommer dette fra en regle no sted? vil gjerne se utregningsmetoden skjønner du.. litt nyskjerrig på hvilken/hvilke formler som blir brukt. pluss at utregningen av gamma for noe annet enn heltall er noe rustent i denne gården Det er copy paste fra wolframalpha.com Siter
BadWolf Skrevet 27. september 2012 Skrevet 27. september 2012 Trikset for å regne ut integraler er å bruke delvis integrasjon 2 ganger til du får likt integral som det du startet med på høyre side. Da kan du "flytte over" det lignende integralet. Så deler du begge sider på to slik at du står igjen med svaret. Dårlig formulert så om du ikke er veldig matematisk anlagt eller har vert borti det før kan jeg alltids skrive det opp å legge det ut edit: Dette er jo løsning uten grensene, men de kan du bare sette inn til slutt Siter
TaTa Skrevet 27. september 2012 Skrevet 27. september 2012 Det er copy paste fra wolframalpha.com Idd it is^^ Før kunne man se step by step løsning, men det ser ut til at de har fjerna det, med mindre du betaler. Mulig du kan se det om du signer opp for gratisverssjonen. Siter
BadWolf Skrevet 27. september 2012 Skrevet 27. september 2012 Idd it is^^ Før kunne man se step by step løsning, men det ser ut til at de har fjerna det, med mindre du betaler. Mulig du kan se det om du signer opp for gratisverssjonen. Ja men step by step var ofte forvirrende siden Amerikansk matte "forumleres" veldig annerledes i enkelte tilfeller. Kjekt til bruk av fasit da Siter
Eliza Skrevet 27. september 2012 Forfatter Skrevet 27. september 2012 skjønner.. hmm, ikke vært borti før men hvordan skal du kunne flytte over når det er en funksjon? ikke en likning. Siter
BadWolf Skrevet 27. september 2012 Skrevet 27. september 2012 F.eks hvis du har g(x) = f(x) - g(x). Så legger du til g(x) på begge sider g(x) + g(x) = f(x) - g(x) + g(x) og står igjen med 2g(x) = f(x) og du kan si at g(x) = (1/2) f(x) Siter
Eliza Skrevet 27. september 2012 Forfatter Skrevet 27. september 2012 hmm.. interessant, skal teste ut senere Siter
Eliza Skrevet 27. september 2012 Forfatter Skrevet 27. september 2012 ok, testet nå. men kan ikke si jeg ble mye klokere, litt.. men ikke mye blir jo sittenes igjen med f(t)-int(t^0.45)*e^-t dt = resterende delvis utrykk mulig jeg ikke skjønte helt hva du mente med å legge til integralet på begge sider ( i mitt tilfelle trekke fra .. ) Siter
BadWolf Skrevet 27. september 2012 Skrevet 27. september 2012 Mulig jeg har regnet feil også, skal gå gjennom det og se Siter
BadWolf Skrevet 27. september 2012 Skrevet 27. september 2012 For lat til å snu bildene selv edit: Mulig et er fortegnsfeil og faktoriseringsfeil. Har ikke vert sååå nøye . Som du ser er det ikke skrevet helt pent heller, ettersom jeg har utelatt noen tegn som f.eks dt Siter
Eliza Skrevet 27. september 2012 Forfatter Skrevet 27. september 2012 skjønte det , takk BadWolf 1 Siter
Anbefalte innlegg
Bli med i samtalen
Du kan publisere innhold nå og registrere deg senere. Hvis du har en konto, logg inn nå for å poste med kontoen din.